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Abstract

A hierarchy of high-order regridding-remapping schemes for use ingeneralized vertical co-
ordinate ocean models is presented. The proposed regridding-remapping framework is suc-
cessfully used in a series of idealized one-dimensional numerical experiments as well as two-
dimensional internal wave and overflow test cases. The model is capable of replicatingz-, sigma-
and isopycnal-coordinate results, among others. Particular emphasis isplaced on the design of
a continuous isopycnal framework, which is a more general alternative to the layered isopyc-
nal paradigm. Continuous isopycnal coordinates use target interfacedensities to define layers.
In contrast to traditional layered isopycnal models, in which along-layerdensity gradients van-
ish, general coordinate approaches must deal with extra terms. For example, the calculation of
pressure gradient force is more complicated and must be evaluated carefully. High-order re-
constructions within boundary cells are crucial for obtaining sensible results and for reducing
spurious diffusion near boundaries. Vertical advection is implicitly embedded in the remapping
step and directly benefits from high-order schemes. Volume and all tracers are conserved to
machine precision, which is a necessary ingredient for long-term ocean climate modeling. This
hybrid vertical coordinate model provides the framework to easily capture the impact of different
coordinate systems on dynamics.

Keywords: Generalized vertical coordinates; Hybrid vertical coordinates; Remapping schemes;
Ocean modeling; Continuous isopycnal coordinates.

1 Introduction

It is quite common to categorize ocean models according to the type of coordinates used in the
vertical. Geopotential- orz-coordinate models use a grid for which the vertical increment at a given
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level does not vary horizontally (except where partial steps are used) and are particularly well suited
to specifying resolution in the surface boundary layer. Terrain-following- or σ-coordinate models
stretch and shrink the vertical grid in order to conform to the bottom topography and are widely used
for coastal applications. Isopycnal- orρ-coordinate models use a grid defined in terms of layers of
constant potential density1 and are ideal for representing the adiabatic nature of the ocean interior.
Detailed discussions on these model categories may be foundelsewhere (Griffies et al., 2000a; Song
and Hou, 2006).

Each one of these coordinates may be severely deficient in representing certain key physical
processes. Two approaches have been actively pursued to remedy this issue: (1) alter and improve
the subgrid-scale parameterizations to counteract issuesarising from the choice of coordinates; or
(2) move away from the single-coordinate paradigm and towards hybrid representations (i.e., gen-
eralized coordinates), which are combinations of two or more vertical grid types within the same
framework (Kasahara, 1974; Bleck and Boudra, 1981; Gerdes,1993; Oberhuber, 1993; Bleck, 2002;
Halliwell, 2004; Song and Hou, 2006). Due to the dynamical nature of the ocean, these hybrid coor-
dinate systems are adapted in the course of the simulation, which is often implemented via Arbitrary
Lagrangian-Eulerian (ALE) algorithms (Donea et al., 2004).

A successful hybrid coordinate system is contingent on boththe regridding and remapping steps.
Regridding is concerned with optimally locating the new vertical grid. The remapping step acts to
remap all variables from the old grid onto the new grid. Improving the accuracy of remapping is a
major research issue in hybrid coordinate ocean models. Additional complications arise when the
model’s regridding variable, such as density, depends on salinity and temperature via a nonlinear
equation of state. When remapping of the state variables occurs, a new density profile is obtained
via the equation of state. Given a set of target densities, a new grid can then be determined. If
the regridding and remapping schemes are inaccurate, this coupled problem is not guaranteed to
converge and the vertical grid is at risk of drifting away from any sensible state (especially when
the remapping is overly diffusive). One way to circumvent this problem is to remap only one of the
variables (either temperature or salinity) and, given the layer density, diagnose the variable that was
not remapped (Halliwell, 2004). However, this approach results in non-conservation of the variable
that is not remapped, which is unacceptable for long-term climate simulations. The issue of building
a consistent regridding scheme has yet to be fully addressed. High-order remapping schemes have
already been explored by the authors (White and Adcroft, 2008) and the current paper extends our
previous work to provide an effective and consistent hybridcoordinate framework.

One of the objectives of building a general coordinate framework is to enable the comparison
of different vertical coordinate systems within a single framework. Though such intercomparison
exercises have taken place in the past (Chassignet et al., 2000; Willebrand et al., 2001), they gen-
erally involve different models, which, apart from the vertical grid, differ in many other aspects.
This limitation raises the question as to whether differences in model solutions are only caused by
different vertical grids and stresses the need for a single framework in which to evaluate the impact
of coordinate choice.

Two directions of improvement of the generalized coordinate paradigm are investigated. First,
we explore the regridding step in detail and explain how to design a continuous isopycnal framework
using high-order interpolating techniques to determine the location of given target interface densi-
ties. Second, we seek to improve the reconstruction within boundary cells for both the regridding
and remapping steps by no longer resorting to piecewise constants, when deemed appropriate. It is
shown that using high-order extrapolation at the boundaries is critical for obtaining sensible results.

1Throughout this manuscript, density actually refers to potential density with respect to a reference pressure, usually20
MPa in global ocean models.
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2 Regridding framework

[Figure 1 about here]

Regridding-remapping algorithms involve a regridding step, whereby a new grid is generated
based on some criteria, and a remapping step, whereby the variables are remapped from the old grid
onto the new grid (Figure 1). It is generally required that the remapping be both conservative and
monotonic in the sense that no new extrema should be created nor existing ones amplified. This
constraint is particularly important in applications where boundedness of some variables must be
guaranteed or when non-monotonicity would trigger convective adjustments (Griffies et al., 2000a).
High-order remapping schemes were studied by White and Adcroft (2008). We now concentrate on
regridding and lay out the necessary tools needed to obtain aconsistent hybrid coordinate frame-
work.

If a coordinate is cast in a functional form of independent variables (e.g., geopotential or terrain-
following) then regridding is relatively straightforwardand we refer the interested reader to the ex-
isting literature (e.g. see references mentioned by Griffies et al. (2000a) and Song and Hou (2006)).
In contrast, coordinates that are function of dependent variables (e.g., density) have traditionally
been implemented in a layered formulation. Here, the layer densities are restored to target values
by means of entrainment and detrainment schemes, which can be worked out in two ways. One
technique is local and consists in displacing water masses between adjacent layers until target val-
ues are reached. This is the common approach (Hallberg, 2000; Bleck, 2002; Halliwell, 2004) and
implicitly assumes a piecewise constant representation within each layer. Building on this piecewise
layered representation, one might want to extend this approach by using a globally reconstructed
profile. Here, the objective is to determine the new grid, such that the integral of density over the
new layers matches target values. This scenario is illustrated in Figure 2. It turns out that there is
no unique solution defining the set of layers. To avoid this problem, we choose to use a contin-
uous representation of density (i.e., not layered), which allows meaningful interpolation. We can
then specify coordinates via interface target densities. We should emphasize that target densities
(whether interface or layer) define the grid but do not have any physical meaning. In that respect,
using target interface densities is no more arbitrary than using target layer densities.

[Figure 2 about here]
In a regridding-remapping context, building continuous isopycnal coordinates presents two ma-

jor difficulties. (1) Density depends on salinity and temperature via the equation of state. When
these are remapped, each layer of the new grid inherits a new density, which alters the very density
profile upon which the new grid was based. The problem is thus coupled and achieving convergence
is essential to ensure the stability of the model. (2) For practical reasons, the adiabatic character of
the flow must be satisfied as accurately as possible (Griffies et al., 2000b). Any spurious mixing
resulting from regridding-remapping inaccuracies must beminimized. These two difficulties are
addressed in this paper. In contrast, layered isopycnal models are built in such a way that they are
intrinsically adiabatic.

2.1 Continuous isopycnal coordinates

A few notational conventions simplify the exposition of this work.

Notation 1 GN refers to a one-dimensional, nonuniform grid made up ofN cells of widthshk,
k = 1, . . . , N , and coordinatesxk, k = 1, . . . , N + 1, such thathk = xk+1 − xk.
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Notation 2 We work in a finite-volume sense and every variableu is defined in terms of its cell
valuesūk onGN .

Notation 3 Within each cell of widthhk = xk+1 − xk, use will be made of a local coordinate
ξ ∈ [0, 1] such that

x = xk + (xk+1 − xk) ξ

= xk + hkξ,
(1)

wherex is the global coordinate.

The termsconservative reconstruction andcontinuous reconstruction will be used throughout the
text. A reconstruction is defined as a piecewise polynomial representation of the data known at
the cell level. A reconstruction is said to be conservative when the average of the polynomial over
each cell is equal to the cell value. The conservative reconstruction over cellk is notedRk(x) and
satisfies

1

hk

∫ xk+1

xk

Rk(x) dx =

∫ 1

0

Rk(ξ) dξ = ūk. (2)

A reconstruction is said to be continuous when it is continuous over the entire domain. The deriva-
tives of continuous reconstructions are not required to be continuous. Note that building a profile that
satisfies monotonicity, continuity and conservation is generally not possible. We therefore choose
the monotonic reconstruction to satisfy conservationor continuity, but not both.

The regridding-remapping algorithm can be summarized as follows. We are given a gridGN and
cell averages̄uk representing some scalaru. A functionf(u) andk + 1 target valuestk are given.
Cellwise values off are notedf̄k = f(ūk). The objective is to determine the new gridG̃N such that
fint(x̃k) = tk, wherex̃k are the coordinates defining the grid̃GN andfint is a reconstruction that de-
pends onf̄k and is used to interpolate the grid. The scalaru is then remapped fromGN ontoG̃N and
a new reconstruction may be determined in order to obtain another grid. This procedure is iterated
until convergence to a given tolerance. While remapping schemes must be based on conservative
reconstructions, regridding schemes may rely on either conservative or continuous reconstructions.

In the context of an isopycnal coordinate ocean model,f is the density andu can be salinity
or temperature. Density is the variable used for the regridding while salinity and temparature are
remapped. For the sake of clarity, we assume that the function f depends only on one variable. We
also assume that cell values̄fk = f(ūk) are monotonically increasing on the initial gridGN . This
is a reasonable assumption for stably stratified flows (density increases with depth) and is required
to uniquely determine the grid based on target interface valuestk. Note that the reconstructionfint

depends on cellwise values̄fk = f(ūk). An alternative would be to first compute the reconstruction
uint for the independent variableu and, then, definefint = f(uint). This method, however, does not
guarantee thatfint is monotonically increasing when a nonlinear equation of state is used. For the
sake of simplicity and perhaps at the cost of a small loss of accuracy, we choose the first approach.

2.2 Regridding schemes

As previously mentioned, regridding can be based either on conservative or continuous recon-
structions. By allowing continuous, but not necessarily conservative, reconstructions, we are able to
expand the suite of schemes presented by White and Adcroft (2008). Both types of reconstruction
are acceptable since neither local conservation nor globalcontinuity are required for the regridding
step of the regridding-remapping algorithm. We require these profiles to be globally monotonic.
Each cellwise polynomial must be monotonic; this property is termed local monotonicity. When
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combined with the requirement that all discontinuities of the edge values (if any) are monotonic,
global monotonicity follows. Global monotonicity must be satisfied to provide unique locations of
target interface values.

2.2.1 Conservative reconstructions

All remapping schemes presented by White and Adcroft (2008),such as variations of the piece-
wise parabolic method (PPM) and the new piecewise quartic method (PQM) are motononic and con-
servative and can therefore also be used for the regridding.Because these schemes are constrained
to be conservative with respect to the cell values, they generally are not continuous. Regarding
edge-value and edge-slope estimates, the same notation as that used by White and Adcroft (2008)
will be used here. Hence,hn and ihn respectively refer to explicit and implicitnth-order accu-
rate estimates. Explicit estimateshn are computed by fitting a polynomial in a finite-volume sense
through the data withinn contiguous cells and evaluating the polynomial at the location of the edge.
Implicit estimates are based on compact schemes and requirethe solution of a tridiagonal system.
For a given order of accuracy, implicit estimates are more accurate than explicit estimates. For a
given scheme, when both the edge values and the edge slopes are used, their order of accuracy is
mentioned following the scheme name (e.g.,PQM ih4ih3 means thatih4 edge values andih3 edge
slopes are used).

2.2.2 Continuous reconstructions

A continuous linear reconstruction based on the cell values(referred to asP1M, not to be confused
with the discontinuousPLM) requires the determination of the single edge value at the interfaces
between cells. A continuous cubic reconstruction (referred to asP3M) requires the estimation of
the edge slopes in addition to the edge values. The slopes do not need to be uniquely defined
at each edge: the slopes may differ when the edge is approached from the left and right. These
two schemes are second- and fourth-order accurate, respectively. To be monotonic, the continuous
linear reconstruction simply requires the edge values to lie between neighboring cell averages. The
variety of high-order edge-value estimates can be used here, together with the technique to bound
the edge values to ensure monotonicity (White and Adcroft, 2008). In contrast, the continuous cubic
reconstruction needs to be properly limited, as described in detail in the appendix.

2.3 A hierarchy of regridding-remapping schemes

Given the regridding schemes introduced above and the remapping schemes presented by White
and Adcroft (2008), many choices are available for the regridding-remapping algorithm. Table 1
summarizes the selection of 30 regridding-remapping schemes that are considered in this paper,
together with their order of accuracy. An order of accuracyhn means that the scheme can exactly
retrieve a global polynomial of degreen − 1 based on the cell values. In other words, for this
polynomial of degreen−1, the new grid obtained during the regridding step (via interpolation) will
be exactand the remapping between the old and new grids will be exact too.A comparison between
a selection of continuous and conservative reconstructionschemes is provided in Figure 3. The test
profile in Figure 3 is defined on[0, 1] as follows:

{

1
4 [1 + tanh (40(x − 0.25))] if x ≤ 0.4,
1
2 + 1

4 [1 + tanh (15(x − 0.65))] otherwise.
(3)
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Conservative schemes outperform continuous ones of the same order because they can represent
sharp gradients more accurately by allowing discontinuities.

[Figure 3 about here]

3 Extrapolation schemes at the boundaries

To preserve monotonicity of cell values, the reconstruction within boundary cells is necessarily
limited to piecewise constants. In other words, boundary cell values are treated as extrema. As
will be shown in test cases, there is a lot to gain from relaxing the monotonicity constraint within
boundary cells. This relaxation can be done by carefully extrapolating the boundary edge values
(and edge slopes when needed) to reconstruct the profile.

In the following, it is assumed that the reconstruction within all interior cells is known and
boundary cell reconstructions need to be determined. The following procedures apply to the left
boundary cell only. Extension to the right boundary cell is straightforward. The indexes0 and1
refer to the boundary cell and the cell next to it, respectively. Cell widths are notedh0 andh1. Cell
values are noted̄u0 and ū1. The reconstructions are notedR0(ξ) andR1(ξ), where use is made
of the local coordinate.R0(ξ) must be determined andR1(ξ) is known. A comparison of several
extrapolation schemes is illustrated in Figure 4.

[Figure 4 about here]

3.1 Extrapolation for the P1M scheme

Two edge values are needed forP1M. The right edge valueuR is known and the left one must be
extrapolated. The one-sided slope, expressed in the local coordinate system of the boundary cell, is
first computed:

σ = 2
ū1 − ū0

h0 + h1
h0.

TheP1M reconstruction is then given by

R0(ξ) = uR + σ (ξ − 1) .

3.2 Extrapolation for the PLM scheme

Only the slope must be determined. Enforcing local conservation fixes the second degree of
freedom. The slope is computed based on the right edge valueuR and the cell averagēu0. Expressed
in the local coordinate system of the boundary cell, we have

σ = 2 (uR − ū0) .

ThePLM reconstruction is then given by

R0(ξ) = ū0 + σ

(

ξ −
1

2

)

.

3.3 Extrapolation for the PPM scheme

To determine a parabola within the boundary cell, we need to determine three degrees of freedom.
The right edge valueuR and slopeu′

R are known from the adjacent cell. The constraint of local
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conservation closes the system. Given these three parameters, the left edge value is given by

uL = 3ū0 +
1

2
u′

R − 2uR.

Given the parametersuL, uR andū0, the resulting parabola is limited using the standard procedure
developed by Colella and Woodward (1984).

3.4 Extrapolation for the P3M scheme

Higher-order extrapolations, such as cubic, are trickier because the use of directionally-biased
data often leads to large-amplitude oscillations. As a consequence, a cubic based on local conserva-
tion as well as on the right edge value, slope and curvature yields inaccurate estimates for the left
edge value and slope and a very inaccurate reconstruction overall. A more subdued extrapolation
method is needed, which rational functions can fulfill. The rational functions presented by Xiao
et al. (2002) are monotonic by construction and possess three degrees of freedom. The general form
is

L(ξ) =
a + 2bξ + βbξ2

(1 + βξ)
2 , (4)

wherea, b andβ are parameters to be determined. This determination can be done by enforcing
local conservation and the right edge value and slope (whichare known). Doing so, we obtain

β =
2 (uR − ū)

u′

R

− 1,

b = uR (β + 1) − ū,

a = ū (β + 1) − b.

Once the rational function is known, the left edge value and slope are given by

uL = a

and
u′

L = 2 (b − aβ)

respectively. Given both edge values and both edge slopes, the cubic is completely determined and
limited following the procedure described in the appendix.

The oscillation-free nature and accuracy provided by rational functions come at a price. A
rational function such as Eq. (4) has a singularity atξp = −1/β, the location of which matters.
Of course, the singularity must not lie in[0, 1]. However, this constraint alone does not prevent
erratic behavior. Let us assume that the data set is monotonically increasing (̄u1 > ū0). In that case,
enforcing local conservation constrains the boundary edge-value estimate to be smaller thanū0. If
ξp < 0, there is no guarantee that the value of the rational function at the boundary will be bounded
at all. This behavior can be likened to that of the function−1/(x + ǫ) whereǫ ≪ 1. The desired
behavior would be obtained by requiringξp > 1. In that case, it is guaranteed that the rational
function is asymptotic within the cell and, therefore, bounded from below. An example function is
−1/(x − 1 − ǫ). By examining Eq. (4), the singularity is located at:

ξp =
u′

R

u′

R − 2 (uR − ū0)
.
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Since we have assumedu′

R > 0, to ensure thatξp > 1 requires thatuR > ū0 and

u′

R > 2 (uR − ū0) (5)

Note that whenu′

R = 2 (uR − ū0), β = 0 and the rational function reverts toPLM . When the
rational function does not behave properly, i.e., when Eq. (5) is not obeyed, the boundary edge value
and slope are estimated usingPPM extrapolation, as described above.

3.5 Extrapolation for the PQM scheme

Extrapolation forPQM works in a way very similar to the cubic extrapolation scheme. A quartic
has five degrees of freedom. We use local conservation and theright edge value and slope, as
calculated from the quartic in the adjacent cell. The boundary edge value and slope are determined
using the rational function, Eq. (4). When the latter is not appropriate because of the location of the
singularity, left edge value and slope are estimated usingPPM. The quartic is then limited following
the procedure detailed by White and Adcroft (2008).

4 Convergence and error analysis

Convergence and error analyses of remapping schemes alone have been investigated by White
and Adcroft (2008). In this section, we briefly explore the convergence properties of regridding-
remapping schemes for use in the context of continuous isopycnal coordinates. Idealized one-
dimensional test cases are considered.

[Figure 5 about here]
A full regridding-remapping iteration is presented in Figure 5 for the profile defined by

u(x) =
1

2
[1 + tanh (5(x − 0.5))] (6)

and usingP1M ih4 for the regridding step andPLM for the remapping step. Note that, in this
particular case, we are simply assumingf(u) = u, which eases the understanding of the algorithm.
A detailed explanation of the iterative procedure is given in the caption of Figure 5. In Table 2,
several error measures are used to evaluate the performanceof 30 regridding-remapping schemes
in seeking the location of the 21 target values{0.0, 0.05, . . . , 1.0} for the profile defined by Eq.
(6). Note that when a given target value is out of range, its location is set to be equal to that of the
overtaken boundary. Each cell of Table 2 contains four numbers.

The first one is the number of iterations required to attain grid convergence to a tolerance of
10−6. The deviation between successive grids is calculated as

D(m) =

[

1

N + 1

N+1
∑

k=1

(xk − x̃k)
2

]1/2

(7)

wherem is the iteration number,xk are coordinates of the old grid and̃xk are coordinates of the
new grid. Iterations stop whenD(m) is smaller than a given tolerance.

The second number of each cell in Table 2 is theL2-norm of the error between the exact profile
and the reconstruction used for remapping, computed on the last grid. It is defined as

E1 =

[

N
∑

k=1

∫ xk+1

xk

(u(x) − Rk(x))
2 dx

]1/2

, (8)
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whereu(x) is the exact profile andRk(x) is the reconstruction on cellk. When the reconstruction
used for remapping is exact, this reconstruction error vanishes. This property remains true even
when the reconstruction used for regridding is inexact. In that case, the new grid will be inexact but
since the grid-on-grid remapping is exact, cell averages and reconstructions remain exact.

The third number of each cell in Table 2 is the grid error, which measures the error between the
approximate grid obtained at the end of the iterative procedure and the exact grid based on the exact
profile. The error measure is computed as follows:

E2 =

[

1

N + 1

N+1
∑

k=1

(

xk − xexact
k

)2

]1/2

. (9)

For the grid error to vanish, both the reconstruction used for regridding and the reconstruction used
for remapping must be exact. It is therefore the most holistic error measure of all.

The fourth, and last, number of each cell in Table 2 is a measure of the error between cell values
obtained on the last grid and the exact cell values computed on that grid and based on the analytical
profile. The error is calculated as follows:

E3 =

[

N
∑

k=1

hk

(

ūk − ūexact
k

)2

]1/2

, (10)

which vanishes when the reconstruction used for remapping is exact. In Table 2, the error measures
are nondimensional. The most reliable schemes are those that are able to quickly determine an
accurate grid. These schemes have the smallest grid error, Eq. (9), and they converge to the final grid
in few iterations. In addition, if the reconstruction error, Eq. (8), is small, any subsequent arbitrary
regridding (i.e., not necessarily isopycnal) will yield accurate cell values through remapping. In view
of these criteria, any scheme usingPCM for remapping should be ruled out, if only for the lack of
convergence. The schemes based onPQM remapping by far outperform their peers whenPPM, P3M

or PQM are used for regridding. Smaller grid errors are achieved byusing various combinations of
PPM andPQM schemes with the smallest being obtained viaPQM ih6ih5 (regridding) -PQM ih4ih3

(remapping).
Estimatingih4 and ih6 edge values andih3 and ih5 edge slopes require solving tridiagonal

systems. As explained by White and Adcroft (2008), forih4 edge values andih3 edge slopes, the
entries of the systems are closed-form expressions. Forih6 edge values andih5 edge slopes, how-
ever, the entries of the tridiagonal system are determined by solving6 × 6 linear systems when the
grid is nonuniform (for uniform grids, closed-form expressions are easy to obtain). The linear sys-
tems are composed of powers of coordinates, up tox6, which tends to produce relatively inaccurate
solutions when the grid contains thin cells and abrupt changes in resolution. This situation is most
likely the cause for the loss of accuracy (see the grid error)observed forPQM ih6ih5 - PQM ih6ih5

compared withPQM ih6ih5 (regridding) -PQM ih4ih3 (remapping) in Table 2.
Using higher-order schemes also becomes valuable when the profile contains sharp features that

tend to shrink most of the grid cells away from boundaries andplateaus. This behavior is exem-
plified in Figure 6 where a comparison between low-order (P1M ih4-PLM ) and high-order (PQM

ih6ih5 - PQM ih6ih5) regridding-remapping schemes is presented after the firstiteration. The low-
order scheme fails to obtain an accurate grid, fails to capture sharp elbows and is inaccurate within
boundary cells. The high-order scheme provides a remedy to these three flaws. In this example, the
lack of resolution near boundaries is due to the isopycnal nature of the grid and may be problematic.
If the grid is to be subsequently modified to include more cells near the boundaries – e.g., to refine
the bottom boundary layer or the surface mixed layer –, inaccurate boundary reconstructions would

9



lead to inaccurate cell values and could impair the physicalintegrity of the solution. In that respect,
we notice that Table 2 shows a decrease in the reconstructionerror (second number in each cell)
when, for a given regridding scheme, the remapping is improved. This error reduction is mostly
due to an improved boundary representation since the smoothinterior does not pose any particular
problem.

[Figure 6 about here]
In all experiments presented in the following section, onlyone regridding iteration is performed

when building continuous isopycnal grids (as opposed to iterating until convergence to a small toler-
ance). In practical applications, iterating until convergence would be too computationally expensive
because it would require several computations of reconstructed profiles for both the regridding and
the remapping at each time step. We do care, however, about the ability of the algorithm to con-
verge to a final state. In situations where a steady state is reached, it is important that successive
regridding-remapping events do not alter the dynamics. This property of non-alteration is the moti-
vation behing investigating the convergence of the regridding-remapping algorithm.

5 Test cases

In this section, two-dimensional test cases are consideredwhere different vertical coordinate sys-
tems are compared and the effect of regridding-remapping schemes on continuous isopycnal co-
ordinate configurations is investigated. We intentionallydo not include any experiment using the
full-fledged version of the ocean general circulation model. Such experiments will be the subject of
a forthcoming paper focusing on the choice of the most adequate vertical grids for realistic, large-
scale simulations, using the material presented in this paper.

5.1 Ocean model description

The prototype ocean model we use is built on the layered isopycnal ocean model HIM (Hallberg
Isopycnal Model) (Hallberg and Gnanadesikan, 2006), whichwas enhanced with the regridding-
remapping algorithm presented in this paper to provide generalized vertical coordinate capabili-
ties. An Arakawa C grid is used to discretize the equations layerwise. The dynamics is split into
barotropic and baroclinic modes using two different time steps (Hallberg, 1997) and both estimates
of the free-surface elevation fields are reconciled using the approach advocated by Hallberg and
Adcroft (2009). The thermodynamical component of the modelmay use yet a different time step,
which reduces the computational overhead. The pressure gradient force is analytically calculated
following Adcroft et al. (2008). This algorithm assumes a constant representation of temperature
and salinity within each layer, which had to be modified to account for higher-order polynomial
reconstructions. As will be shown, this step is necessary toensure consistency with respect to the
initial conditions.

As implemented, the regridding-remapping toolbox and the original version of the model are
black boxes to each other. If regridding is activated, a simple flag is switched on. Otherwise, the
original layered isopycnal version of the model is used. Whena new grid is to be defined, the
model transfers the primitive model variables – layerwise velocity components, layer thicknesses,
temperature, salinity, various tracers – to the regridding-remapping toolbox. The latter takes care of
designing a new grid and remapping all variables onto the newgrid. Those variables are then trans-
ferred back to the model’s dynamical core to continue the time integration. Regridding-remapping
capabilities are called after one or several thermodynamical time steps. Between regridding events,
the dynamics simply evolves according to the layered version of the model. When regridding-
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remapping is activated at every thermodynamical time step,the extra computational cost incurred
varies between 5 % and 10 %, depending on which schemes are used.

5.2 Motionless state

In a model configuration without external forcing, where densities are constant layerwise and
the pressure gradient force calculation assumes so, the model state remains motionless unless layer
interfaces are inclined. This motionless state is represented in Figure 7a for a very simple two-
column, two-layer configuration. In a continuous isopycnal-coordinate framework where regridding
and remapping are used, achieving this motionless state requires the initial state and the pressure
gradient force calculation to be consistent. In such a framework, the positions of layer interfaces
depend on target densities and global reconstructions. If the layer densities lead to different global
density reconstructions in different water columns, the locations of interface densities will be differ-
ent as well. Interfaces will end up inclined and lead to spontaneous motion. To avoid this spurious
behavior, layer densities must be initialized in a way that is consistent with the reconstruction used
for the regridding. The densities must be chosen to generatethe same global density profile within
each column. Given this constraint, a motionless state willbe achieved only when the pressure gra-
dient force computation is modified to take into account the fact that across-layer reconstructions
are no longer constant. These modifications are illustratedin Figure 7b.

[Figure 7 about here]
The ability to preserve a motionless state in the regridding-remapping framework is important.

It is a verification of consistency requirements, as explained above and illustrated in Figure 7. It
also assesses the robustness of remapping and regridding schemes since those should not trigger
spontaneous motion. Figure 8 shows that the regridding-remapping algorithm passes this sanity
check when stratification is linear, a linear equation of state is used, initial conditions are consistently
prescribed and the pressure gradient force calculation accounts for linear reconstructions of density
and bottom topography. Details on the numerical experiments are given in the figure’s caption. As a
consequence, terrain-following coordinates do not experience any pressure gradient errors when all
properties are linear. However, any nonlinear departure will generate pressure gradient errors that
are larger than the machine-precision threshold seen here.A parabolic density profile, for example,
would generate spurious motion unless the model is modified to account for this kind of profile. In
particular, bottom topography should be represented quadratically rather than linearly. We do not
intend to build a terrain-following coordinate model (thisvertical grid was merely shown to illustrate
the potential of regridding) and this avenue has not yet beenimplemented. It is, however, feasible
and the considerations outlined above pave the way to do so.

[Figure 8 about here]
To represent topography with continuous isopycnal andz coordinates, vanishing layers are used

in such a way that the sum of all layer thicknesses is equal to the local ocean depth. In theory, the
thickness of these vanishing layers should be zero. However, a finite minimum thickness is used in
our model for two reasons. First, high-order edge-value andedge-slope estimates behave unstably
when there is a large and abrupt change in layer thicknesses (of 6 or more orders of magnitude). In
the following experiments, we set the minimum thickness to be10−3 m. Vanished layers generated
during the regridding are therefore inflated to comply with this threshold. This issue could be ad-
dressed by getting rid of vanished layers before regriddingand remapping and adding them back.
This procedure will be investigated in the future. Second, any inaccuracy in the pressure gradient
force calculation – even if it is as low as machine-precisionlevel, which is unavoidable – results in
spontaneous motion. Very thin vanishing layers, say on the order of10−10 m (as is used in HIM),
are overly sensitive to this kind of spontaneous motion, even if it is negligible in magnitude. The
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effect is a large change in density (via advection of salt andtemperature) within the vanishing layer
and subsequent non-negligible motion. The latter is due to the regridding in response to this density
change and to a nonzero pressure gradient force. As a consequence, for the experiment shown in
Figure 8, a minimum thickness of10−1 m was necessary to keep the velocity magnitude as low as
10−12 m s−1. When a minimum thickness of10−3 m is used, the velocity magnitude increases to
about10−8 m s−1, which is acceptable and recommended for realistic applications.

5.3 Internal waves

[Figure 9 about here]

We now consider a 1000-m deep, 200-km wide, flat-bottomed rectangular basin to assess the
accuracy of regridding-remapping schemes in the context ofnonrotating, internal wave propagation.
Two different initial states are used and are presented in Figure 9. The first one (Figure 9a) contains
20 layers and a thin pycnocline made up of 8 layers. Due to constant salinity increments from layer
to layer, the vertical salinity structure features sharp gradients. We wish to assess the ability of
the regridding-remapping schemes to resolve the sharp gradients with the least amount of spurious
diffusion. The second one (Figure 9b) is simpler and consists of 10 uniformly-distributed layers.
It will be used to investigate the effect of boundary reconstructions on accuracy. In all cases, the
horizontal grid contains 160 cells. This overly high resolution – 40 cells would be sufficient – is
chosen as a way to limit the amount of diffusion caused by thePLM layerwise advection scheme.
While this scheme is justified for layered isopycnal coordinates where along-layer gradients tend to
be reduced,z-coordinate solutions may suffer a lot from spurious diffusion introduced by horizontal
advection schemes. If the horizontal grid is too coarse, this spurious diffusion might dominate that
from remapping, which would render our analyses irrelevant. The baroclinic and thermodynamical
time steps are both 450 s. The barotropic time step is 5 s. The regridding-remapping algorithm is
called every themodynamical time step. There is neither momentum diffusion, nor tracer diffusion
(vertical and horizontal). Density is set to be equal to salinity. Any spurious diffusion is a direct
result of remapping, and to a much lesser extent, layerwise advection. All results are shown after 25
days.

[Figure 10 about here]
Figure 10 investigates the ability of continuous isopycnalandz regridding-remapping schemes

to preserve the vertical salinity structure, when setting off the model with the thin pycnocline initial
conditions. For thez-coordinate experiments, the grid is refined at mid-depth. While PQM brings
about only marginal improvement overPPM for continuous isopycnal coordinates, usingPQM for
z coordinates turns out to be necessary to obtain an acceptable solution in terms of the vertical
salinity structure. The solution obtained with the layeredisopycnal version of the model serves as a
reference for the pycnocline thickness. Yet, we do not expect the solutions to look identical (there is
a noticeable phase lag between the layered and continuous isopycnal solutions). Different vertical
coordinates are known to have great influence on the solutions and determining which coordinate
system is the best is out of the scope of this paper. We use the layered isopycnal version of the model
as reference for its inherent adiabatic nature and ability in preserving the vertical salinity structure.

[Figure 11 about here]
An assessment of the accuracy of these schemes is proposed inFigure 11 where the volume

change of a range of salinity classes is used as a proxy for measuring spurious diffusion. By con-
struction, the layered isopycnal version is adiabatic and since no remapping is involved, each salinity
class strictly conserves its volume. The closer a regridding-remapping scheme approaches this be-
havior, the more accurate it is. The results of Figure 11 confirm that the improvement gained by
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usingPQM overPPM is not significant for continuous isopycnal coordinates, while being substantial
for z coordinates. Figures 12 and 13 repeat the foregoing experiment using uniformz coordinates,
which is particularly challenging considering the thinness of the pycnocline. These clearly con-
firm the superiority ofPQM . The fact that accuracy saturation is reached withPPM for continuous
isopycnal coordinates may not be surprising. Continuous isopycnal coordinates try to mimic the be-
havior of impermeable surfaces in a different way. When accurate high-order regridding-remapping
schemes are used, the layers that are obtained via regridding may be close enough to that obtained
by letting the model evolve as a layered model from the last time regridding-remapping was per-
formed. In this respect, regridding barely modifies the gridand the remapping step has negligible
effects. The spurious diffusion that we experience beyond the saturation level attained withPPM

may well be a dominance of spurious diffusion caused by thePLM layer advection scheme. Using
higher-order advection schemes will shed light on this issue, which is future work.

[Figure 12 about here]
[Figure 13 about here]
Finally, Figure 14 investigates the effect of using high-order reconstructions (i.e., extrapolating)

within boundary cells on spurious diffusion using continuous ispoycnal coordinates, starting with
the initial conditions presented in Figure 9b. When a simplePCM reconstruction is used within
boundary cells, the global error does not decrease no matterwhich regridding-remapping scheme is
used. In that case, spurious diffusion near boundaries completely dominates any spurious diffusion
that might occur in the interior. It turns out that employinghigh-order reconstruction schemes within
boundary cells is critical for not wasting the overall potential of high-order regridding-remapping
schemes. This experiment exemplifies one more time the superiority of PPM andPQM overPLM, as
illustrated by the very small amount of volume change (less than 0.3 % overall) in salinity classes
and hence, the quasi-adiabatic nature of the solution. As a reference, running the layered isopycnal
version with a coefficient of diapycnal diffusion of2×10−5 m2 s−1 yields the same global amount of
spurious mixing. Since the initial vertical displacement in our experiment (about 100 m) is about one
order of magnitude larger than what is typically experienced within the thermocline, we expect the
amount of spurious diffusion caused by regridding-remapping to be even smaller in more realistic,
larger-scale numerical simulations and to approach valuesakin to molecular processes.

[Figure 14 about here]

5.4 Dense overflow

[Figure 15 about here]

Resolving dense overflows has become a classic benchmark forocean models and, in particular,
to study the influence of vertical coordinates. In this paper, we do not aim at drawing any conclusion
as to which vertical grid is the best to represent overflows. Past studies have largely contributed to
the conclusion that isopycnal coordinates are ideal for this kind of problem (Winton et al., 1998;
Papadakis et al., 2003; Legg et al., 2006). We consider a nonrotating 4000-m deep, 800-km wide
basin with a 800-m deep shallow bay containing dense water (Figure 15). A linear stratification is
prescribed for which salinity varies from 34 at the surface to 35 at the bottom. The equation of state
simply assumes that density is equal to salinity. Water in the bay has a salinity of 35. The model
is run for 10 days with a baroclinic and thermodynamical timestep of 900 s. The barotropic time
step is 10 s. Horizontal and vertical momentum diffusion areset to104 m2 s−1 and10−4 m2 s−1,
respectively. There is no tracer diffusion. The horizontalgrid resolution is 10 km (80 cells) and 40
layers span the vertical space.

[Figure 16 about here]
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[Figure 17 about here]
Figures 16 and 17 present four snapshots (days 1, 2, 5 and 10) of the solutions obtained with the

layered isopycnal, continuous isopycnal,z and sigma versions of the model. The layered isopycnal
version is considered the reference solution and the continuous isopycnal version yields a similar
solution. By contrast, thez and sigma versions are not-surprisingly very different andlag both
isopycnal versions. The extremely large amount of numerical entrainment in thez-simulation is
explicable by the relatively coarse vertical and horizontal resolution compared with the bottom
boundary layer thickness (Winton et al., 1998). As shown in Figure 18, ourz-coordinate results
are extremely similar to that obtained using MITgcm (Marshall et al., 1997a,b), which is a state-of-
the-artz-coordinate, C-grid ocean general circulation model. The MITgcm simulation is hydrostatic
and uses the seventh-order horizontal advection scheme OS7presented by Daru and Tenaud (2004),
which is less diffusive than thePLM layerwise advection scheme used in our model. Differences
in simulation outputs are due to, and may not be limited to, different parameterizations, different
topography representations and different advection schemes. Though similar overall, these differ-
ences emphasize the importance of using a single framework when studying the effect of vertical
coordinates. In Figure 19, the solution obtained with the continuous isopycnal version is presented
at day 2 when using six different regridding-remapping schemes. UsingPQM for both the regridding
and the remapping is necessary to fully capture the dense plume along the slope. It also turns out
that continuous reconstruction schemes (i.e.,P1M – not shown – andP3M) are very inappropriate
for this kind of flow featuring sharp density gradients.

[Figure 18 about here]
[Figure 19 about here]

6 Conclusions

We have developed a consistent and efficient high-order regridding-remapping algorithm for use
in generalized coordinate ocean models. The regridding-remapping algorithm conserves volume (or
mass in a non-Boussinesq version), momentum, salt, temperature and any other passive tracer to ma-
chine precision. It is a necessary ingredient for long-termocean climate modeling. Our regridding-
remapping framework has been used in a series of idealized one-dimensional numerical experiments
as well as two-dimensional internal wave and overflow test cases. In all cases,PQM schemes provide
the most accurate solutions for regridding and remapping. Our model is capable of replicatingz-,
sigma- and isopycnal-coordinate results. To our knowledge, we have presented the first ocean model
capable of representing continuous isopycnal coordinates.

Particular emphasis has been put on the design of the continuous isopycnal framework, which
uses the traditional layered isopycnal paradigm in the underlying representation of the system be-
tween regridding-remapping events. Using continuous isopycnals allows a more elegant and accu-
rate construction of truly hybrid vertical coordinates, which open the door to many other choices of
vertical coordinates. This study will be the subject of a forthcoming paper. However, moving away
from a layered framework has consequences, one of which being that along-layer density gradi-
ents no longer vanish. The Montgomery potential approach for computing pressure gradient forces
is no longer valid and the finite volume form of the pressure force calculation must be used with
the modifications presented in this paper to account for across-layer density variations. In contrast
with layered isopycnals, layerwise advection now plays a more influential role as it can alter the
layer-averaged densities.PLM may no longer be an acceptable choice for layerwise advection in a
hybrid vertical coordinate model. In a hybrid coordinate framework, diffusion tensors need to be
rotated to minimize spurious diapycnal mixing. We believe,however, that the benefits of the more
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general character of our approach far outweigh these additional costs. It should also be noted that
a number of physical processes may be more easily added to themodel when the vertical grid is
not constrained to layered isopycnals. These processes include geothermal heating, double diffusion
and interior heat sources and sinks.

In developing this regridding-remapping algorithm, high-order reconstructions within boundary
cells turned out to be crucial for obtaining sensible results and for reducing spurious diffusion near
boundaries. Advection schemes may borrow the ideas put forward in this paper regarding boundary
extrapolations to increase their accuracies near boundariesand extrema. We also note that, in our
model, vertical advection is implicitly embedded in the remapping step and directly benefits from
high-order schemes.

The issue of which vertical coordinate system is best for large-scale ocean simulations remains
outstanding (Griffies et al., 2000a). Though intercomparison exercises have taken place in the past
(Chassignet et al., 2000; Willebrand et al., 2001) as an attempt to address this issue, they generally
involve different models, which, apart from the vertical grid, differ in many other aspects (Figure
18). This limitation raises the question as to whether differences in model solutions are only caused
by different vertical grids and stresses the need for a single framework in which to evaluate the
impact of coordinate choice. Only a few models are able to usez andσ coordinates within the same
framework and none of them include an isopycnal representation. The hybrid coordinate paradigm
presented in this paper, though still incomplete for full-fledged studies of the large-scale ocean
circulation, enables the comparison of many different vertical coordinate systems within a single
framework.

A The continuous cubic interpolation scheme (P3M)

A cubic has four degrees of freedom. Both edge values and slopes are used to determine them.
Because a cubic is potentially fourth-order accurate, we require the edge-value and edge-slope esti-
mates to be fourth-order accurate as well. As a sanity check,a global cubic profile must be exactly
retrieved via piecewise cubic interpolation. A cubic can bewritten locally as

C(ξ) = a0 + a1ξ + a2ξ
2 + a3ξ

3. (11)

Given the left and right edge valuesuL anduR, respectively, and the left and right edge slopesu′

L

andu′

R, respectively, the four coefficients in Eq. (11) are given by:

a0 = uL,

a1 = u′

L,

a2 = 3 (uR − uL) − u′

R − 2u′

L,

a3 = u′

R + u′

L + 2 (uL − uR) ,

(12)

where

u′

L =
∂C

∂ξ
|ξ=0 =

∂C

∂x
|x=xk

hk,

u′

R =
∂C

∂ξ
|ξ=1 =

∂C

∂x
|x=xk+1

hk.

The above relationships are easily derived from Eq. (1).
In the following, use will be made of the following slope definitions. Note that the variableu

is generic here. Given a cell of widthhC and left and right neighboring cells of widthshL andhR,

15



respectively, the limitedPLM slopeσ is defined as

σ =

{

sign(σC) min (|σL|, |σR|, |σC |) if σLσR > 0,

0 otherwise,
(13)

whereσL andσR are the left and right one-sided slopes, respectively, andσC is the centered slope.
The sign function is equal to 1 for positive arguments, -1 fornegative arguments and 0 otherwise.
The one-sided and centered slopes are defined as

σL = 2
ūC − ūL

hL + hC
×

hL + hC

hC
= 2

ūC − ūL

hC
,

σR = 2
ūR − ūC

hC + hR
×

hC + hR

hC
= 2

ūR − ūC

hC
,

σC = 2
ūR − ūL

hL + 2hC + hR
,

(14)

whereūL, ūC andūR are the cell values associated with the left, center and right cells, respectively.
Note that the slopes defined by Eq. (14) are the traditional van Leer limited PLM slopes (e.g.,
Leveque, 2002), written for nonuniform grids.

Once unique edge-value estimates have been computed, they are bounded by neighboring cell
values when needed. The ensuing edge values will not be modified afterwards. Edge-slope estimates
are then computed and modified, if necessary, to ensure consistency with the limitedPLM slopeσ,
as defined by Eq. (13). These steps are very similar to those involved with thePQM limiter (White
and Adcroft, 2008). For example, if thePLM slope is nonnegative, both edge slopes should be
nonnegative as well. If one of them is inconsistent, it is setto zero.

At this point, edge values are bounded and edge slopes are consistent. Yet, this does not guaran-
tee monotonicity. The existence of a local extremum is equivalent to the existence of an inconsistent
inflexion point, namely an inflexion point where the slope is inconsistent with thePLM slope. When
that happens, the edge slopes must be modified in order to movethe inflexion point away from the
interior and onto one of the edges.

The second derivativeC(2)(ξ) of Eq. (11) is given by

C(2)(ξ) = b0 + b1ξ, (15)

whereb0 = 2a2 andb1 = 6a3, as defined by Eq. (12). Ifb1 = 0, the second derivative ofC(ξ) is
single-signed:C(ξ) is parabolic and monotonic. The algorithm stops here. Ifb1 6= 0, there is an
inflexion point located atξip = −b0/b1. If ξip /∈ (0, 1), the curvature in[0, 1] is single-signed and
the cubic is monotonic. The algorithm stops here. Ifξip ∈ (0, 1), the slope of the cubic atξ = ξip,
C ′(ξip), must be computed. IfC ′(ξip) has the same sign as thePLM slope, the cubic is monotonic
and the algorithm stops here. If the sign ofC ′(ξip) is opposite to the sign of thePLM slope, the cubic
is not monotonic. These four cases are illustrated in Figure20. In the last case, the inflexion point
is moved away from the interior and toward one of the edges, according to the following rule:

|σL| ≤ |σR| ⇒ move inflexion point onto left edge,

|σR| < |σL| ⇒ move inflexion point on right edge,
(16)

where the slopes are defined by Eq. (14). White and Adcroft (2008) provide a justification for using
the above rule. Shifting the inflexion point must be done by adjusting the edge slopes. Both cases
are now explained.

[Figure 20 about here]
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Shifting the inflexion point onto the left edge Requiring the inflexion point of the cubic to be
located on the left edge means that we must enforce Eq. (15) tovanish atξ = 0. Hence, we must
havea2 = 0, or

3 (uR − uL) − u′

R − 2u′

L = 0. (17)

Because both edge slopes may be adjusted, Eq. (17) is overdetermined and only one slope can be
modified. Solving Eq. (17), tentative adjusted slopes (identified by an asterisk) are given by

u′∗

L =
3

2
(uR − uL) −

1

2
u′

R.

u′∗

R = 3 (uR − uL) − 2u′

L,

Three situations may occur. (1)u′∗

L is consistent, (2)u′∗

R is consistent and (3) bothu′∗

L andu′∗

R are
inconsistent. The case where both tentative slopes are consistent is included in either (1) or (2).

When case (1) occurs, we keep the new left edge slope and compute the right one according to
Eq. (17). The new slopes are defined as follows:

u′

L = u′∗

L ,

u′

R = 3 (uR − uL) − 2u′∗

L .

When case (2) occurs, we keep the new right edge slope and compute the left one according to Eq.
(17). The new slopes are defined as follows:

u′

L =
3

2
(uR − uL) −

1

2
u′∗

R .

u′

R = u′∗

R ,

Finally, when case (3) occurs, the left edge slope is set equal to zero (see justification by White and
Adcroft (2008)) and the the right edge slope is coputed according to Eq. (17). The new slopes are

u′

L = 0,

u′

R = 3 (uR − uL) .

An illustration of this limiter is provided in Figure 21.
[Figure 21 about here]

Shifting the inflexion point onto the right edge Requiring the inflexion point of the cubic to be
located on the right edge means that we must enforce Eq. (15) to vanish atξ = 1. Hence, we must
havea2 + 3a3 = 0, or

3 (uR − uL) + 2u′

R + u′

L = 0. (18)

Because both edge slopes may be adjusted, Eq. (18) is overdetermined and only one slope can be
modified. Solving Eq. (18), tentative adjusted slopes (identified by an asterisk) are given by

u′∗

L = 3 (uR − uL) − 2u′

R.

u′∗

R =
3

2
(uR − uL) −

1

2
u′

L,

Three situations may occur. (1)u′∗

L is consistent, (2)u′∗

R is consistent and (3) bothu′∗

L andu′∗

R are
inconsistent. The case where both tentative slopes are consistent is included in either (1) or (2).
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When case (1) occurs, we keep the new left edge slope and compute the right one according to
Eq. (18). The new slopes are defined as follows:

u′

L = u′∗

L ,

u′

R =
3

2
(uR − uL) −

1

2
u′∗

L .

When case (2) occurs, we keep the new right edge slope and compute the left one according to Eq.
(17). The new slopes are defined as follows:

u′

L = 3 (uR − uL) − 2u′∗

R .

u′

R = u′∗

R ,

Finally, when case (3) occurs, the right edge slope is set equal to zero (see justification by White and
Adcroft (2008)) and the the left edge slope is computed according to Eq. (18). The new slopes are

u′

L = 3 (uR − uL) ,

u′

R = 0.
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REMAPPING

PCM PLM PPM PPM PQM PQM

h4 ih4 ih4ih3 ih6ih5

R
E

G
R

ID
D

IN
G

P1M

ih4
h h2 h2 h2 h2 h2

PLM h h2 h2 h2 h2 h2

PPM

ih4
h h2 h3 h3 h3 h3

P3M

ih4ih3
h h2 h3 h3 h4 h4

PQM

ih6ih5
h h2 h3 h3 h4 h5

Table 1: Orders of accuracy of a selection of regridding-remapping schemesconsidered in the paper. An or-
der of accuracyhn means that the scheme can exactly retrieve a global polynomial profile ofdegreen − 1

based on the cell values. In other words, it means that the new grid obtained via regridding will be exact
and the remapping between the old and new grids will be exact too. The schemes are the following:P1M

ih4 (continuous piecewise linear reconstruction withih4 edge-value estimates),PLM (classical conservative
piecewise linear reconstruction),PPM h4 (classical conservative piecewise parabolic reconstruction, as pre-
sented by Colella and Woodward (1984)),PPM ih4 (conservative piecewise parabolic reconstruction withih4

edge-value estimates),P3M ih4ih3 (continuous piecewise cubic reconstruction withih4 edge-value estimates
andih3 edge-slope estimates),PQM ih4ih3 (conservative piecewise quartic reconstruction withih4 edge-value
estimates andih3 edge-slope estimates),PQM ih6ih5 (conservative piecewise quartic reconstruction withih6

edge-value estimates andih5 edge-slope estimates).
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REMAPPING

PCM PLM PPM PPM PQM PQM

h4 ih4 ih4ih3 ih6ih5

R
E

G
R

ID
D

IN
G

P1M

ih4

38 7 8 8 8 7
1.72(−2) 4.80(−3) 1.34(−3) 1.37(−3) 5.22(−4) 2.04(−4)
6.91(−3) 3.19(−4) 1.53(−4) 1.40(−4) 1.49(−4) 1.54(−4)
5.81(−3) 3.30(−4) 5.16(−5) 2.59(−5) 1.14(−5) 1.08(−6)

PLM

> 50 6 8 8 7 8
1.87(−2) 4.49(−3) 2.82(−3) 2.93(−3) 5.40(−4) 1.82(−4)
8.33(−3) 2.36(−3) 1.68(−3) 1.67(−3) 2.04(−3) 2.03(−3)
7.94(−3) 4.21(−4) 2.98(−4) 3.02(−4) 1.48(−5) 6.40(−6)

PPM

ih4

> 50 4 3 3 3 3
4.48(−2) 4.88(−3) 1.35(−3) 1.39(−3) 5.31(−4) 2.06(−4)
2.90(−2) 2.03(−4) 5.01(−5) 3.29(−5) 2.90(−5) 2.60(−5)
3.04(−2) 3.41(−4) 5.32(−5) 2.61(−5) 1.16(−5) 7.69(−7)

P3M

ih4ih3

> 50 7 4 4 3 4
1.90(−2) 4.82(−3) 1.43(−3) 1.48(−3) 5.32(−4) 2.02(−4)
1.18(−2) 3.94(−4) 1.24(−4) 1.07(−4) 1.59(−4) 1.50(−4)
9.79(−3) 3.46(−4) 5.74(−5) 3.26(−5) 1.16(−5) 9.17(−7)

PQM

ih6ih5

> 50 9 6 4 3 3
4.57(−2) 5.39(−3) 1.60(−3) 1.40(−3) 5.31(−4) 2.08(−4)
7.53(−3) 2.74(−3) 2.74(−4) 3.15(−5) 2.07(−5) 1.12(−4)
4.44(−3) 3.57(−4) 7.41(−5) 2.67(−5) 1.16(−5) 8.56(−7)

Table 2: Performance evaluation of 30 regridding-remapping schemes used todetermine the location of a grid
based on the profile given by Eq. (6) and on 21 uniformly-distributed target values. Each scheme is assessed
with the help of four numbers. Each of these numbers is explained and defined in Section 4. The first one is the
number of iterations required to attain grid convergence, which happenswhen the deviation between successive
grids, as defined by Eq. (7), is small enough. The second one is a measure of the error on the last grid between
the exact profile and the reconstruction used for remapping. It is defined by Eq. (8). The third one, as defined
by Eq. (9), is a measure of the error between the last approximate and exact grids. The fourth, and last, one is a
measure of the error on the last grid between the approximate cell valuesand exact cell values. It is defined by
Eq. (10). See text for explanations as to the likely cause for the loss of accuracy (see the grid error) observed
for PQM ih6ih5 - PQM ih6ih5 compared withPQM ih6ih5 (regridding) -PQM ih4ih3 (remapping)
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(i) Piecewise polynomial reconstruction based on cell averages.

(ii) A new grid is considered and superimposed on the reconstructed profile.

(iii) Cell averages are computed by integration. Reconstruction is repeated.

cell average of u

reconstruction based on cell averages

new grid

new cell average

x

u

Figure 1: A regridding-remapping algorithm occurs in three steps. The schematicsillustrate a generic situation
where the grid is defined by thex coordinates (horizontal axis) and depicted by the dotted lines and whereu is
the variable that is being remapped (vertical axis). (i) Piecewise polynomial profiles are reconstructed based on
cell averages on a given grid. (ii) A new grid is considered and superimposed on the reconstructed profile. (iii)
Analytic integration of the reconstructed profile over the cells of the new gridgives the cell averages for this
new grid. The reconstruction step is then repeated. This illustration depicts the general case of reconstructions
on nonuniform grids featuring discontinuities across cell interfaces.
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(a) Regridding based on layer target densities
(solution 1)

(b) Regridding based on layer target densities
(solution 2)

(c) Regridding based on interface target densities

old cell averages

new cell averages

new grid

vanished layers

interpolation

interpolated edge values

0.0

0.2

0.4

0.6

0.8

1.0

u

x

0.0

0.2

0.4

0.6

0.8

1.0

u

x

0.0

0.2

0.4

0.6

0.8

1.0

u

x

Figure 2: Illustration of the difference in the grids obtained when using target layer values versus target inter-
face values. In all panels, the initial grid is uniform in space and the initial cell averages are represented by
thick (blue) lines. The objective is to determine the new grid (represented by the vertical dashed lines) based
on target values. In panels (a) and (b), the new grid is determined suchthat the integral of density over the
new layers matches the target values{0.0, 0.25, 0.50, 0.75, 1.0}. Depending on what direction of integration
is chosen (from left to right as in (a) or from right to left as in (b)), the grid for which the new cell averages
are the target values may be different. Notice that some layers have vanished. On the other hand, (c) depicts
the case where a global reconstruction based on the cell averages is computed and the grid is determined by
finding the location of the target interface values{0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. This third method always yields
a unique grid.
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p1m ih4 [2.32 × 10−2]

plm [1.41 × 10−2]

ppm ih4 [5.38 × 10−3]

p3m ih4ih3 [1.05 × 10−2]

pqm ih6ih5 [2.28 × 10−3]

Figure 3: Comparison of continuous (P1M ih4 andP3M ih4ih3) and conservative (PLM, PPM ih4 andPQM

ih6ih5) reconstruction schemes. The exact profile is depicted by a thick, light gray line. The reconstruc-
tion schemes are based on the analytical cell values represented by horizontal light gray lines. There are 16
uniformly-distributed cells.PLM andPPM are discontinuous whileP1M andP3M are continuous (by construc-
tion). BecausePQM allows the representation of sharper curvatures, it remains continuouswhile being con-
servative. TheL2-norm of reconstruction errors are indicated in the legend. Overall, discontinuous schemes
perform much better than continuous schemes of the same order because they can represent sharp gradients,
with PQM being the best.
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plm

pqm

ppm

exact

Figure 4: Comparison ofPLM, PPM andPQM extrapolation schemes within the left boundary cell. The thick,
light gray line represents the exact solution. Cell averages are depictedby black, horizontal lines. The grid is
represented by vertical dotted lines.PQM performs the best.
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exact
p1m ih4 (regridding)

plm (remapping)
cell averages

exact
p1m ih4 (regridding)

plm (remapping)
cell averages

x

x

Figure 5: Illustration of the first full iteration for the regridding-remapping algorithmused for continuous
isopycnal coordinates.P1M ih4 and PLM are used for regridding and remapping, respectively. The exact
profile is depicted by a thick gray line. The cell averages are indicated by “+” symbols, which are located
at the cell centers of the previous grid. In the top panel, cell averages are known on a uniform grid (this is
the initial condition of the problem). TheP1M ih4 scheme is used to find the location of target values, which
are represented by the horizontal dotted lines. The corresponding gridis represented by vertical dotted lines.
The dotted lines depict the new grid onto which the remapping occurs basedon thePLM reconstruction. The
exact grid is drawn with gray vertical lines. When the vertical dotted and gray lines coincide, it means that the
approximate grid is close to the exact grid. The bottom panel shows the situation after remapping has occurred;
the new cell averages have been computed. A newP1M ih4 reconstruction is determined based on the new cell
averages in order to determine the next grid, which is depicted by the dottedline. PLM-based remapping then
occurs to compute the new cell averages. Iterations continue until convergence (to a tolerance of 10−6) of the
grid is attained.
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exact
pqm ih6/ih5 (regridding)

pqm ih6/ih5 (remapping)
cell averages

exact
p1m ih4 (regridding)

plm (remapping)
cell averages

x

x

Figure 6: Comparison between low-order (top) and high-order (bottom) regridding-remapping schemes after
the first iteration for a profile containing sharp features (same profile asthat of Figure 3). In both cases, the
reconstructions are based on the cell averages symbolized by “+”. These averages were obtained after the
first iteration. Notice the inability of low-order schemes to represent sharp features and to properly extrapolate
within boundary cells. These shortcomings lead to slower convergence and low accuracy caused by rapid
degradation of the solution.
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34

36

34

36

34 34

3635.5

(b)(a)

Figure 7: Pressure gradient force issue and solution illustrated using a two-layer configuration with bottom
topography occupying the lower half of the left bottom cell. Four tracer cells are shown. The number within
each tracer cell is the salinity and we assume that density is equal to salinity. The pressure gradient force is
computed at velocity points (staggered with respect to tracer points) by integration along the sides of the volume
represented by the dashed line (Adcroft et al., 2008). The objectiveis to set up the initial conditions and modify
the pressure gradient force calculation in order for the model to be motionless.
(a) In the original layered approach, reconstruction is constant within each layer and density is constant along
a layer. The right side integral exactly counterbalances the left side integral and the bottom side integral. The
pressure gradient force is zero and there is no motion. However, in a regridding context, both layer thicknesses
must be determined by seeking the location of the interface density35. Let us assumePLM is used for regridding
and remapping. If the original configuration is used, the location of interface density35 will be higher than the
current interior interface within the left column. In the right column, the interface will remain in place because it
precisely corresponds to an interface density of35 based on a linear reconstruction. If the left interior interface
moves upward, the pressure force is no longer zero and motion occurs, which we want to avoid.
(b) To avoid motionand maintain the current layer thicknesses, the salinity within the bottom left cell must
be such that the piecewise linear reconstruction (shown with the dashed-dotted line) is the same within each
column. In doing so, the regridding step will not displace the interior interface. For the pressure gradient force
to be zero, side integrals must no longer assume constant reconstruction and must take into account the linear
reconstruction.
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(a) z coordinates (b) Continuous isopycnal coordinates

(c) Terrain-following coordinates

Figure 8: Velocity contours representative of a motionless state using different coordinate systems. The Gaus-
sian sea mount lies in a 4000-m deep, 200-km wide basin. Stratification is linear and a linear equation of state
is used. There is no forcing and initial conditions are prescribed to ensure motionless evolution, as explained
in Figure 7. There is no viscosity, no diffusion and no bottom drag. Thereare 20 layers in the vertical and 40
cells across. The grid is depicted in light gray. The dynamical and thermodynamical time steps are both 900
s. Regridding-remapping is carried out at every time step usingPPM ih4 for remapping (and also regridding in
(b)). Contours are drawn at velocities of10

−12 m s−1 (solid line) and−10
−12 m s−1 (dotted line) at day 5 for

z and continuous isopycnal coordinates. Contours of±10
−13 m s−1 are used for terrain-following coordinates.

The maximum absolute value is about10
−11 m s−1, which is due to round-off errors originating in the pressure

gradient force calculation. (a)z coordinates using partial cells. (b) Continuous isopycnal coordinates using a
non-uniform target density distribution to illustrate the possibility of locally increasing vertical resolution. (c)
Terrain-following coordinates. Velocity anomalies are smaller for the terrain-following coordinates because
there is no vanishing layer.
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0 200 km

0

−1000 m

150 m

(a) (b)

Figure 9: Initial conditions used for the internal wave experiment. The basin is 1000m deep and 200 km wide.
There are 160 cells in the horizontal. In both cases, salinity is uniformly distributed across layers, independently
from their thicknesses (the salinity increment from layer to layer is constant). Salinity varies from 34 at the
top to 36 at the bottom. A linear equation of state is used and only depends on salinity. Initial interfacial
displacements are prescribed according to a cosine function. The total displacement from left to right is 150
m. (a) There are 20 layers and a thin pycnocline comprises 8 of them. (b) Layer thicknesses are uniformly
distributed.
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Cont. isop. (pqm ih4ih3 - pqm ih4ih3)

Cont. isop. (ppm ih4 - ppm ih4)

Cont. isop. (plm - pcm)

z refined grid (pqm ih6ih5)

z refined grid (ppm ih4)

z refined grid (pcm)

Layered isopycnal (no remapping)

Figure 10: Salinity contours (dark blue is 34, dark red is 36, increment is 0.2) at day 25, starting with the
initial state represented in Figure 9a. Results from the layered isopycnal version of the model is shown in the
top panel, in which case there is no remapping, no diabatic effects and the vertical structure of the pycnocline
is well preserved. In this regard, this solution is the reference. Continuous isopycnals based on high-order
regridding-remapping schemes are able to preserve the sharp pycnocline. Note thatPLM - PCM is so diffusive
that it erodes all stratification. When usingz coordinates (with local refinement at mid-depth), onlyPQM is
capable of decently resolving the sharp salinity gradients around the pycnocline.
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pqm ih4ih3 - pqm ih4ih3 (0.023)

ppm ih4 - ppm ih4 (0.027)

plm - plm (0.053)

pqm ih6ih5 (0.18)

ppm ih4 (0.27)

plm (0.29)

Continuous isopycnal coordinates z coordinates (refined at mid-depth)

Initial volume distribution

Volume change within each density class (in %)

−10%

+10%

−10%

+10%

−10%

+10%

−300%

+300%

−300%

+300%

−300%

+300%

Figure 11: Analysis of spurious diffusion introduced by the various regridding-remapping schemes used in
the experiment described in Figure 10. The initial volume distributions represent the initial volumes contained
within each of the salinity classes uniformly spanning the range 34-36. Because of the thin pycnocline, most
of the volume is contained within lower and higher salinity classes. Initial conditions are altered by an initial
regridding-remapping step, which explains the differences between continuous isopycnals andz. The volumet-
ric change is shown for these two coordinate systems and for differentschemes. Note the scale difference (10 %
for continuous isopycnals and 300 % forz). Volumetric changes for layered isopycnal coordinates are strictly
zero, which serves as reference. The numbers between parentheses next to each scheme name represent the
total amount of volume that has shifted between salinity classes comparedwith the initial state (total volume
is 1). PQM only marginally decreases spurious diffusion with continuous isopycnalsbut the improvement is
substantial withz coordinates.

33



z uniform grid (ppm ih4)

z uniform grid (pcm)

z uniform grid (pqm ih6ih5)

z uniform grid (plm)

Layered isopycnal (no remapping)

Figure 12: Salinity contours (dark blue is 34, dark red is 36, increment is 0.2) at day 25, starting with the initial
state represented in Figure 9a. Results from the layered isopycnal version of the model is shown in the top
panel, in which case there is no remapping and no diabatic effect and the vertical structure of the pycnocline is
well preserved. In this regard, this is the reference. These results complement those presented in Figure 10 in
that uniformz coordinates are used.
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ppm ih4 (0.37)

pcm (0.74)

pqm ih6ih5 (0.18)

plm (0.32)

z coordinates (uniform)

Initial volume distribution

Volume change within each density class (in %)

−300%

+300%

−300%

+300%

−300%

+300%

−300%

+300%

Figure 13: Analysis of spurious diffusion introduced by the various regridding-remapping schemes used in
the experiment described in Figure 12. The initial volume distribution represents the initial volumes contained
within each of the salinity classes uniformly spanning the range 34-36. Because of the thin pycnocline, most of
the volume is contained within lower and higher salinity classes. The volumetricchange is shown for different
remapping schemes. Volumetric changes for layered isopycnal coordinates are strictly zero, which serves as
reference. The numbers between parentheses next to each schemename represent the total amount of volume
that has shifted between salinity classes compared with the initial state (total volume is 1). While it may be
argued that none of these schemes is particularly convincing – evenPQM displaces almost 20 % of the total
volume away from initial salinity classes –,PQM fares much better than its peers. Note thatPCM completely
empties out the first and last two salinity classes because of spurious diffusion.
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pqm ih4ih3 - pqm ih4ih3 (0.037)

ppm ih4 - ppm ih4 (0.037)

plm - plm (0.037)

pqm ih4ih3 - pqm ih4ih3 (0.0026)

ppm ih4 - ppm ih4 (0.0031)

plm - plm (0.0280)

Continuous isopycnal coordinates
without boundary extrapolation

Continuous isopycnal coordinates
with boundary extrapolation

Initial volume distribution

Volume change within each density class (in %)
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Figure 14: The effect of using high-order reconstructions (i.e., extrapolating)within boundary cells on spurious
diffusion is investigated using continuous isopycnal coordinates, startingwith the initial conditions presented
in Figure 9b. The initial volume distribution represents the initial volumes contained within each of the salinity
classes uniformly spanning the range 34-36. Target densities have been chosen to yield thicker boundary cells.
The volumetric change is shown for different remapping schemes when no boundary extrapolation is used (left)
and when boundary extrapolation is switched on (right). Volumetric changes for layered isopycnal coordinates
are strictly zero, which serves as reference. No matter which scheme isused, spurious diffusion caused by
usingPCM within boundary cells is dominant. Higher-order extrapolations substantiallydecrease the amount
of spurious diffusion, leading to less than 0.3 % of volume being displacedfrom initial salinity classes when
usingPQM .
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0 800 km
0

−800 m

−4000 m
80 km 240 km

Figure 15: Basin geometry and initial conditions for the dense overflow experiment. Alinear stratification
is considered where salinity varies from 34 at the surface to 35 at the bottom. Dense water (salinity of 35) is
located in the shallow bay and flows downslope. In this experiment, density isequal to salinity.
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Layered isopycnal coordinates Continuous isopycnal coordinates

(pqm ih4ih3 - pqm ih4ih3)

Day 10

Day 5

Day 2

Day 1

34.0 34.2 34.4 34.6 34.8 35.0
salinity

Figure 16: Comparative snapshots for the dense overflow experiment using the layered isopycnal version of
the model (left panels) and the continuous isopycnal version (right panels) based on thePQM ih4ih3 - PQM

ih4ih3 regridding-remapping scheme.
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z coordinates (pqm ih6ih5) σ coordinates (pqm ih6ih5)

Day 10

Day 5

Day 2

Day 1

34.0 34.2 34.4 34.6 34.8 35.0
salinity

Figure 17: Comparative snapshots for the dense overflow experiment using thez-coordinate version of the
model (left panels) and theσ-coordinate version (right panels). Both versions are based on thePQM ih6ih5 -
PQM ih6ih5 remapping scheme. These snapshots should also be compared with those presented in Figure 16.
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z coordinates (pqm ih6ih5) MITgcm

Day 10

Day 5

Day 2

Day 1

34.0 34.2 34.4 34.6 34.8 35.0
salinity

Figure 18: Comparative snapshots for the dense overflow experiment using thez coordinate version of the
hybrid coordinate model (left panels – same as that of Figure 17) and MITgcm (right panels) in hydrostatic
mode. Differences in simulation outputs are due to, and may not be limited to,different parameterizations,
different topography representations and different advection schemes. Though similar overall, these differences
emphasize the importance of using a single framework when studying the effect of vertical coordinates.
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p3m ih4ih3 - pqm ih4ih3

ppm h4 - ppm h4

plm - pcm

pqm ih4ih3 - pqm ih4ih3

ppm ih4 - ppm ih4

plm - plm

Layered isopycnals

34.0 34.2 34.4 34.6 34.8 35.0
salinity

Figure 19: Comparative snapshots at day 2 for the dense overflow experiment using different regridding-
remapping schemes for the continuous isopycnal version of the model.The very top panel shows the layered
isopycnal version. Using the latter as reference, it appears that only the PQM ih4ih3 - PQM ih4ih3 regridding-
remapping scheme is able to fully capture the descending plume.
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a b

c d

Figure 20: In each panel, the cubic has consistent edge slopes. Yet, this edge-slope consistency does not
guarantee monotonicity. The presence of a local extremum – and the breakdown of monotonicity – depends on
whether the slope at the inflexion point (marked by an empty circle) is consistent (here positive). (a) The cubic
has no inflexion point: it is degenerated into a parabola. (b) The cubic hasan inflexion point lying outside the
cell. Thus, the curvature is single-signed within the cell and the cubic is monotonic. (c) The inflexion point
lies within the cell but the slope at the location of the inflexion point is consistent.The cubic is monotonic. (d)
The slope at the location of the inflexion point is inconsistent. The cubic is nonmonotonic and needs further
limiting.
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unlimited cubic

limited cubic

cell value

Figure 21: P3M limiter in action when the initial cubic has consistent edge slopes (both edge slopes are positive
and thePLM slope is positive) but has an inconsistent inflexion point. In both panels, the inflexion point is
shifted onto the left edge.
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